## **DETERMINING SLOPE USING TWO POINTS**

Recall:

Draw a line that fits each description

Positive Slope

Negative Slope

Zero Slope

**Undefined Slope** 









## Example: What is the slope of the graph shown?



Slope = 
$$\frac{rise}{run}$$
=  $\frac{5}{3}$ 

## **Calculating Slope Using Coordinates**

Let the first point (1, -1) be represented by  $(X_1, Y_1)$ 

Set the second point (  $\frac{14}{4}$  ,  $\frac{4}{4}$  ) be represented by (  $\frac{x_2}{4}$  ,  $\frac{4}{4}$  )

Remember: 
$$Slope = \frac{rise}{run} = \frac{\text{(vertical change)}}{\text{(horizontal change)}}$$

Rise = 
$$y_2 - y$$

and

Run = 
$$\chi_2 - \chi_1$$

So... therefore Slope = 
$$\frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{4 - (-1)}{4 - 1}$$

$$= \frac{5}{3}$$

X1 4, X2 42

## Example: Calculate the slope of a line that passes through the coordinates (3, 5) and (-2, 1)

Step 1: Assign  $(x_1, y_1)$  to one point and  $(x_2, y_2)$  to the other point

Step 2: Substitute values into the slope equation

Step 3: Solve

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{1 - 5}{-2 - 3}$$

$$= -\frac{1}{5}$$

$$= \frac{1 - 5}{15}$$



Ex: Find the slope for each line

a) A line passing through (-3,5) and (5, -2) c) A line passing through (-10, -4) and (8, 6)

$$m = \frac{42 - 41}{x_2 - x_1}$$

$$= \frac{-2 - 5}{5 - (-3)}$$

$$= \frac{-7}{8}$$

$$M = \frac{4^{2} - 4^{1}}{2^{2} - 4^{1}}$$

$$= \frac{6 - (-4)}{8 - (-10)}$$

$$= \frac{10}{18}$$

$$= \frac{5}{9}$$

b) A line with the following table of values

| X                | у    |
|------------------|------|
| 1 x <sub>1</sub> | 3 42 |
| 2                | 5    |
| 3                | 7    |
| 4 X2             | 9 42 |

| X     | y      |
|-------|--------|
| -2 X  | 1 9,   |
| -1    | -4     |
| 0     | -9     |
| 1 X 2 | -14 Yz |

$$m = \frac{y^2 - y^2}{x^2 - x^2}$$

$$= \frac{9 - 3}{4 - 1}$$

$$= \frac{6}{3}$$

$$= \frac{3}{4}$$